

(KEY CONCEPTS + SOLVED EXAMPLES)

SET & RELATIONS

- 1. Set Theory
- 2. Types of Sets
- 3. Universal Set
- 4. Disjoint Set
- 5. Complementary Set
- 6. Sub Sets
- 7. Power Set
- 8. Venn (Euler) Diagrams
- 9. Operations on Sets
- 10. Cartesian Product of two Sets
- 11. Algebraic Operations on Sets
- 12. Relations
- 13. Types of Relations
- 14. Inverse of Relations

KEY CONCEPTS

1. Set Theory

Collection of well defined objects which are distinct and distinguishable. A collection is said to be well defined if each and every element of the collection has some definition.

- **1.1 Notation of a set :** Sets are denoted by capital letters like A, B, C or { } and the entries within the bracket are known as elements of set.
- **1.2 Cardinal number of a set :** Cardinal number of a set X is the number of elements of a set X and it is denoted by n(X) e.g. $X = [x_1, x_2, x_3]$ \therefore n(X) = 3

2. Representation of Sets

2.1 Set Listing Method (Roster Method) :

In this method a set is described by listing all the elements, separated by commas, within braces { }

2.2 Set builder Method (Set Rule Method) :

In this method, a set is described by characterizing property P(x) of its elements x. In such case the set is described by $\{x : P(x) \text{ holds}\}$ or $\{x | P(x) \text{ holds}\}$, which is read as the set of all x such that P(x) holds. The symbol '|' or ':' is read as such that.

3. Type of Sets

3.1 Finite set :

A set X is called a finite set if its element can be listed by counting or labeling with the help of natural numbers and the process terminates at a certain natural number n. i.e. n(X) = finite no. eg (a) A set of English Alphabets (b) Set of soldiers in Indian Army

3.2 Infinite set :

A set whose elements cannot be listed counted by the natural numbers (1, 2, 3.....n) for any number n, is called a infinite set. e.g.

(a) A set of all points in a plane

(b) $X = \{x : x \in R, 0 < x < 0.0001\}$

(c) $X = \{x : x \in Q, 0 \le x \le 0.0001\}$

3.3 Singleton set :

A set consisting of a single element is called a singleton set. i.e. n(X) = 1,

e.g. $\{x : x \in N, 1 < x < 3\}, \{\{\}\}$: Set of null set, $\{\phi\}$ is a set containing alphabet ϕ .

3.4 Null set :

A set is said to be empty, void or null set if it has no element in it, and it is denoted by ϕ . i.e. X is a null set if n(X) = 0. e.g.: {x : x \in R and x²+2=0}, {x:x>1 but x<1/2}, {x:x \in R, x²<0}

3.5 Equivalent Set :

Two finite sets A and B are equivalent if their cardinal numbers are same i.e. n(A) = n(B).

3.6 Equal Set :

Two sets A and B are said to be equal if every element of A is a member of B and every element of B is a member of A. i.e. A = B, if A and B are equal and $A \neq B$, if they are not equal.

4. Universal Set

It is a set which includes all the sets under considerations i.e. it is a super set of each of the given set. Thus, a set that contains all sets in a given context is called the universal set. It is denoted by U. e.g. If $A = \{1, 2, 3\}, B = \{2, 4, 5, 6\}$ and $C = \{1, 3, 5, 7\}$, then $U = \{1, 2, 3, 4, 5, 6, 7\}$ can be taken as the universal set.

5. Disjoint Set

Sets A and B are said to be disjoint iff A and B have no common element or $A \cap B = \phi$. If $A \cap B \neq \phi$ then A and B are said to be intersecting or overlapping sets.

: (i) If А e.g. = {1, 2, 3}, В {4, 5, 6} and = С 7. 9} {4, then A and В are disjoint where = set B and C are intersecting sets. (ii) Set of even natural numbers and odd natural numbers are disjoint sets.

6. Complementary Set

Complementary of Α is containing set а set а set all those of universal elements set which are not in A. It is denoted by Ā, A^C Α'. So or $\mathbf{A}^{\mathbf{C}}$ { x U = : х \in but Х ∉ A}. e.g. If set 2, А = {1, 3, 4, 5} and universal set $U = \{1, 2, 3, 4, \dots, 50\}$ then $\overline{A} = \{6, 7, \dots, 50\}$

NOTE :

All disjoint sets are not complementary sets but all complementary sets are disjoint.

7. Subset

A set A is said to be a subset of B if all the elements of A are present in B and is denoted by $A \subset B$ (read as A is subset of B) and symbolically written as : $x \in A \Rightarrow x \in B \Leftrightarrow A \subset B$

7.1 Number of subsets :

Consider		а	set	Х	containing		n	elements	as
{x ₁ ,	x ₂ ,	,	x_n	then	the	total	number	of	subsets
of $X = 2^n$									

Proof : Number of subsets of above set is equal to the number of selections of elements taking any number of them at a time out of the total n elements and it is equal to 2^n

 $\therefore \quad {^nC_0} + {^nC_1} + {^nC_2} + \dots + {^nC_n} = 2^n$

7.2 Types of Subsets :

A set A is said to be a **proper subset** of a set B if every element of A is an element of B and B has at least one element which is not an element of A and is denoted by $A \subset B$.

The set A itself and the empty set is known as **improper subset** and is denoted as $A \subseteq B$.

e.g. If $X = \{x_1, x_2,, x_n\}$ then total number of proper sets $= 2^n - 2$ (excluding itself and the null set). The statement A \subset B can be written as B \supset A, then B is called the **super set** of A and is written as B \supset A.

8. Power Sets

The collection of all subsets of set A is called the power set of A and is denoted by P(A)

i.e.
$$P(A) = \{x : x \text{ is } a \text{ subset of } A\}$$
. If
 $X = \{x_1, x_2, x_3, \dots, x_n\}$ then $n(P(X)) = 2^n$; $n(P(P(x))) = 2^{2^n}$.

9. Venn(Euler) Diagrams

The diagrams drawn to represent sets are called Venn diagram or Euler-Venn diagrams. Here we represents the universal U as set of all points within rectangle and the subset A of the set U is represented by the interior of a circle. If a set A is a subset of a set B, then the circle representing A is drawn inside the circle representing B. If A and B are not equal but they have some common elements, then to represent A and B by two intersecting circles.

e.g. If A is subset of B then it is represented diagrammatically in fig.

e.g. If A is a set then the complement of A is represented in fig.

10. Operations on Sets

10.1 Union of sets :

If A and B are two sets then union (\cup) of A and B is the set of all those elements which belong either to A or to B or tobothAandB.Itisalsodefinedas $A \cup B = \{x : x \in A \text{ or } x \in B\}.$ It is represented through Venn diagram in fig.1 & fig.2

10.2 Intersection of sets :

If A and B are two sets then intersection (\cap) of A and B is the set of all those elements which belong to both A and B. It is also defined as $A \cap B = \{x : x \in A \text{ and } x \in B\}$ represented in Venn diagram (see fig.)

10.3 Difference of two sets :

P

If A and B are two sets then the difference of A and B, is the set of all those elements of A which do not belong to B.

Thus, $A - B = \{x : x \in A \text{ and } x \notin B\}$

or $A - B = \{x \in A ; x \notin B\}$

Clearly $x \in A - B \Leftrightarrow x \in A$ and $x \notin B$

It is represented through the Venn diagrams.

10.4 Symmetric difference of two sets :

Set of those elements which are obtained by taking the union of the difference of A & B is (A - B) & the difference of B & A is (B - A), is known as the symmetric difference of two sets A & B and it is denoted by $(A \Delta B)$.

Thus $A \Delta B = (A - B) \cup (B - A)$

Representation through the venn diagram is given in the fig.

11. Number of Elements in Different Sets

If A, B & C are finite sets and U be the finite universal set, then

(i)
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

(ii)
$$n(A \cup B) = n(A) + n(B)$$
 (if A & B are disjoint sets)

$$(iii)n(A - B) = n(A) - n(A \cap B)$$

(iv) $n(A \Delta B) = n[(A - B) \cup (B - A)]$

$$= n(A) + n(B) - 2n(A \cap B)$$

(v)
$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B)$$

$$-n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$$

- (vi) $n(A' \cup B') = n(A \cap B)' = n(U) n(A \cap B)$
- $(vii)n(A' \cap B') = n(A \cup B)' = n(U) n(A \cup B)$

12. Cartesian Product of two Sets

Cartesian product of A to B is a set containing the elements in the form of ordered pair (a, b) such that $a \in A$ and $b \in B$. It is denoted by $A \times B$.

i.e. $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$

 $= \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2), (a_3, b_1), (a_3, b_2)\}$

If set $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2\}$ then

 $A \times B$ and $B \times A$ can be written as :

 $A \times B = \{(a, b) : a \in A \text{ and } b \in B\} \text{ and }$

 $B \times A = \{(b, a) ; b \in B \text{ and } a \in A\}$

Clearly $A \times B \neq B \times A$ until A and B are equal

Note :

- **1.** If number of elements in А n(A) and = m n(B) number n then of elements in $(A \times B) = m \times n$
- 2. Since $A \times B$ contains all such ordered pairs of the type (a, b) such that $a \in A \& b \in B$, that means it includes all possibilities in which the elements of set A can be related with the elements of set B. Therefore, $A \times B$ is termed as largest possible relation defined from set A to set B, also known as universal relation from A to B.

13. Algebraic Operations on Sets

13.1 Idempotent operation :

For any set A, we have (i) $A \cup A = A$ and (ii) $A \cap A = A$

Proof :

(i) $A \cup A = \{x : x \in A \text{ or } x \in A\} = \{x : x \in A\} = A$

 $(ii) A \cap A = \{x: x \in A \And x \in A\} = \{x: x \in A\} = A$

13.2 Identity operation :

For any set A, we have

(i) $A \cup \phi = A$ and

(ii) $A \cap U = A$ i.e. ϕ and U are identity elements for union and intersection respectively

Proof :

(i) $A \cup \phi = \{x : x \in A \text{ or } x \in \phi\}$ = $\{x : x \in A\} = A$ (ii) $A \cap U = \{x : x \in A \text{ and } x \in U\}$ = $\{x : x \in A\} = A$

13.3 Commutative operation :

For any set A and B, we have

(i) $A \cup B = B \cup A$ and (ii) $A \cap B = B \cap A$

i.e. union and intersection are commutative.

13.4 Associative operation :

If A, B and C are any three sets then

(i) $(A \cup B) \cup C = A \cup (B \cup C)$

(ii)
$$(A \cap B) \cap C = A \cap (B \cap C)$$

i.e. union and intersection are associative.

13.5 Distributive operation :

If A, B and C are any three sets then

(i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

(ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

i.e. union and intersection are distributive over intersection and union respectively.

13.6 De-Morgan's Principle :

If A and B are any two sets, then

(i) $(A \cup B)' = A' \cap B'$

$$(ii) (A \cap B)' = A' \cup B$$

Proof : Let (i) be arbitrary element of х an $(A \cup B)'$. Then $x \in (A \cup B)' \implies x \notin (A \cup B)$ $\Rightarrow x \notin A \text{ and } x \notin B$ $\Rightarrow x \in A' \cap B'$ Again element Β'. Then let an arbitrary of A' be У \cap $y \in A' \cap B'$ \Rightarrow y \in A' and y \in B' \Rightarrow y \notin A and y \notin B \Rightarrow y \notin (A \cup B) \Rightarrow y \in (A \cup B)' \therefore A' \cap B' \subseteq (A \cup B)'. Hence $(A \cup B)' = A' \cap B'$ Similarly (ii) can be proved.

14. Relation

A relation R from set X to Y ($R : X \rightarrow Y$) is a correspondence between set X to set Y by which some or more elements of X are associated with some or more elements of Y. Therefore a relation (or binary relation) R, from a non-empty set X to another non-empty set Y, is a subset of $X \times Y$. i.e. $R_H : X \rightarrow Y$ is nothing but subset of $A \times B$.

e.g. Consider a set X and Y as set of all males and females members of a royal family of the kingdom Ayodhya $X = \{Dashrath, Ram, Bharat, Laxman, shatrughan\}$ and $Y = \{Koshaliya, Kakai, sumitra, Sita, Mandavi, Urmila, Shrutkirti\}$ and a relation R is defined as "was husband of "from set X to set Y.

Then $R_H = \{(Dashrath, Koshaliya), (Ram, sita), (Bharat, Mandavi), (Laxman, Urmila), (Shatrughan, Shrutkirti), (Dashrath, Kakai), (Dashrath, Sumitra)\}$

Note :

(i) If a is related to b then symbolically it is written as a R b where a is pre-image and b is image

(ii) If a is not related to b then symbolically it is written as a \mathbb{R} b.

14.1 Domain, Co-domain & Range of Relation :

Domain : of relation is collection of elements of the first set which are participating in the correspondence i.e. it is set of all pre-images under the relation R. e.g. Domain of R_H : {Dashrath, Ram, Bharat, Laxman, Shatrughan}

Co-Domain : All elements of set Y irrespective of whether they are related with any element of X or not constitute codomain. e.g. $Y = \{Koshaliya, Kakai, Sumitra, Sita, Mandavi, Urmila, Shrutkirti\}$ is co-domain of R_H .

Range : of relation is a set of those elements of set Y which are participating in correspondence i.e. set of all images. Range of R_H : {Koshaliya, Kakai, Sumitra, Sita, Mandavi, Urmila, Shrutkirti}.

15. Types of Relations

15.1 Reflexive Relation

 $R: X \to Y$ is said to be reflexive iff x R x $\forall x \in X$. i.e. every element in set X, must be a related to itself therefore $\forall x \in X$; $(x, x) \in R$ then relation R is called as reflexive relation.

15.2 Identity Relation :

Let X be a set. Then the relation $I_x = \{(x, x) : x \in X\}$ on X is called the identity relation on X. i.e. a relation I_x on X is identity relation if every element of X related to itself only. e.g. y = x

Note: All identity relations are reflexive but all reflexive relations are not identity.

15.3 Symmetric Relation

R : Х Y said be iff R is symmetric to (x, \rightarrow y) \in R for all R R \Rightarrow (y, x) ∈ (x, y) i.e. х y ∈ \Rightarrow y R x for all (x, y) \in R. e.g. perpendicularity of lines in a plane is symmetric relation.

15.4 Transitive Relation

R • Х \rightarrow Y is transitive iff (x, y) \in R and (y, z) ∈ R \Rightarrow (x, z) \in R for all (x, y) and (y, z) \in R. i.e. x R y and y R z \Rightarrow x R z. e.g. The relation "being sister of" among the members of a family is always transitive.

Note :

- (i) Every null relation is a symmetric and transitive relation.
- (ii) Every singleton relation is a transitive relation.
- (iii) Universal and identity relations are reflexive, symmetric as well as transitive.

15.5 Anti-symmetric Relation

Let A be any set. A relation R on set A is said to be an antisymmetric relation iff $(a, b) \in R$ and $(b, a) \in R$ $\Rightarrow a = b$ for all a, $b \in A$ e.g. Relations "being subset of"; "is greater than or equal to" and "identity relation on any set A" are antisymmetric relations.

15.6 Equivalence Relation

A relation R from a set X to set Y ($R : X \rightarrow Y$) is said to be an equivalence relation iff it is reflexive, symmetric as well as transitive. The equivalence relation is denoted by ~ e.g. Relation "is equal to" Equality, Similarity and congruence of triangles, parallelism of lines are equivalence relation.

16. Inverse of a Relation

Let A, B be two sets and let R be a relation from a set A to B. Then the inverse of R, denoted by R^{-1} , is a relation from B to A and is defined by $R^{-1} = \{(b, a) : (a, b) \in R\}$, Clearly,

 $(a, b) \in R \Leftrightarrow (b, a) \in R^{-1}$ Also,

Dom of $R = Range of R^{-1}$ and

Range of $R = Dom of R^{-1}$

SOLVED EXAMPLES

Ex.6

Sol.

Ex.7

Sol.

Ex.8

	subsets of the set A and also mention the set of all							
	the subsets of A.							
Sol.	Since $n(A) = 3$							
	\therefore number of subsets of A is $2^3 = 8$							
	and set of all those subsets is P(A) named as							
	power set							
	$P(A):\{\phi,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\},\{a,b,c\}\}$							
Ex.2	Show that n {P[P(ϕ)]} = 4							
Sol.	We have $P(\phi) = \{\phi\}$ \therefore $P(P(\phi)) = \{\phi, \{\phi\}\}$							
	$\Rightarrow P[P(P(\phi))] = \{ \phi, \{\phi\}, \{\{\phi\}\}, \{\phi, \{\phi\}\}\}.$							
	Hence, $n\{P[P(\phi)]\} = 4$							
Fy 3	If $A = \{y : y = 2n + 1, n \in \mathbb{Z}\}$ and							
L'A,J	$\mathbf{R} = \{\mathbf{x} : \mathbf{x} = 2\mathbf{n} + 1, \mathbf{n} \in \mathbb{Z} \text{ and } \mathbf{R} = \{\mathbf{x} : \mathbf{x} = 2\mathbf{n} \in \mathbb{Z}\} \text{ then find } \mathbf{A} \vdash \mathbf{R}$							
G.1	$\mathbf{D} = \{\mathbf{x} : \mathbf{x} = 2\mathbf{n}, \mathbf{n} \in \mathbf{Z}\}, \text{ user find } \mathbf{A} \subseteq \mathbf{D}.$							
501.	$A \cup B = \{x : x \text{ is an odd integer}\} \cup \{x : x \text{ is an}$							
	even integer} = $\{x : x \text{ is an integer}\} = Z$							
Ex.4	If $A = \{x : x = 3n, n \in Z\}$ and							
	$B = \{x: x = 4n, n \in Z\} \text{ then find } A \cap B.$							
Sol.	We have,							
	$x \in A \cap B \iff x = 3n, n \in Z \text{ and } x = 4n, n \in Z$							
	\Leftrightarrow x is a multiple of 3 and x is a							
	multiple of 4							
	\Leftrightarrow x is a multiple of 3 and 4 both							
	\Leftrightarrow x is a multiple of 12 \Leftrightarrow x = 12n,							
	$n \in Z$							
	Hence $A \cap B = \{x : x = 12n, n \in Z\}$							
Ex 5	If A and B he two sets containing 3 and 6							
L'A,J	If A and D be two sets containing 5 and 6							
	number of elements in $A \cup B^2$ Find also the							
	maximum number of elements in $A \cup B$							
Sol	We have $n(\Delta + B) = n(\Delta) + n(B) - n(\Delta - B)$							
501.	we have, $\Pi(A \cup D) = \Pi(A) + \Pi(B) - \Pi(A \cap B)$.							
	This shows that $\Pi(A \cup B)$ is minimum or maximum according on $\Pi(A \cup B)$ is maximum							
	maximum according as $\Pi(A \cap B)$ is maximum or							
	minimum respectivery.							

If a set $A = \{a, b, c\}$ then find the number of

When $n(A \cap B)$ is minimum, i.e., $n(A \cap B) = 0$ This is possible only when $A \cap B = \phi$. In this case, $n(A \cup B) = n(A) + n(B) - 0 = n(A) + n(B) = 3 + 6 = 9.$ So, maximum number of elements in $A \cup B$ is 9. Case-II When $n(A \cap B)$ is maximum. This is possible only when $A \subseteq B$. In this case, $n(A \cap B) = 3$ \therefore $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ =(3+6-3)=6So, minimum number of elements in $A \cup B$ is 6. If $A = \{2, 3, 4, 5, 6, 7\}$ and $B = \{3, 5, 7, 9, 11, 13\}$ then find A - B and B - A. $A - B = \{2, 4, 6\} \& B - A = \{9, 11, 13\}$ If the number of elements in A is m and number of element in B is n then find (i) The number of elements in the power set of $A \times B$. (ii) number of relation defined from A to B (i) Since n(A) = m; n(B) = nthen $n(A \times B) = mn$ So number of subsets of $A \times B = 2^{mn}$ \Rightarrow n (P(A × B)) = 2^{mn} (ii) number of relation defined from A to $B = 2^{mn}$ Any relation which can be defined from set A to set B will be subset of $A \times B$ \therefore A × B is largest possible relation A \rightarrow B \therefore no. of relation from A \rightarrow B = no. of subsets of set $(A \times B)$ Let A and B be two non-empty sets having elements in common, then prove that $A \times B$ and

Sol. We have $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$ On replacing C by B and D by A, we get $\Rightarrow (A \times B) \cap (B \times A) = (A \cap B) \times (B \cap A)$ It is given that AB has n elements so $(A \cap B) \times (B \cap A)$ has n² elements

 $B \times A$ have n^2 elements in common.

Ex.1

But $(A \times B) \cap (B \times A) = (A \cap B) \times (B \cap A)$ \therefore (A × B) \cap (B × A) has n² elements Hence $A \times B$ and $B \times A$ have n^2 elements in common. Ex.9 Let R be the relation on the set N of natural numbers defined by $R : \{(x, y)\} : x + 3y = 12 \ x \in N, y \in N\}$ Find (i) R (ii) Domain of R (iii) Range of R Sol. (i) We have, $x + 3y = 12 \Rightarrow x = 12 - 3y$ Putting y = 1, 2, 3, we get x = 9, 6, 3 respectively For y = 4, we get $x = 0 \notin N$. Also for $y > 4, x \notin N$ *.*.. $R = \{(9, 1), (6, 2), (3, 3)\}$ **(ii)** Domain of $R = \{9, 6, 3\}$ (iii) Range of $R = \{1, 2, 3\}$ **Ex.10** If $X = \{x_1, x_2, x_3\}$ and $y = (x_1, x_2, x_3, x_4, x_5)$ then find which is a reflexive relation of the following : (a) R_1 : {(x_1, x_1), (x_2, x_2) (b) R_1 : {(x_1, x_1), (x_2, x_2), (x_3, x_3) (c) R_3 : {(x_1, x_1), (x_2, x_2), (x_3, x_3), (x_1, x_3), (x_2, x_4) (d) R_3 : {(x_1, x_1), (x_2, x_2),(x_3, x_3),(x_4, x_4) (a) non-reflexive because $(x_3, x_3) \notin R_1$ Sol. (b) Reflexive (c) Reflexive (d) non-reflexive because $x_4 \notin X$ **Ex.11** If $x = \{a, b, c\}$ and $y = \{a, b, c, d, e, f\}$ then find which of the following relation is symmetric relation : R_1 : { } i.e. void relation R_2 : {(a, b)} R_3 : {(a, b), (b, a)(a, c)(c, a)(a, a)} Sol. R1 is symmetric relation because it has no element in it.

 R_2 is not symmetric because (b, a) $\in R_2$ & R_3 is symmetric.

Ex.12 If $x = \{a, b, c\}$ and $y = (a, b, c, d, e\}$ then which of the following are transitive relation.

(a) $R_1 = \{ \}$

(b) $R_2 = \{(a, a)\}$

(c) $\mathbf{R}_3 = \{(a, a\}, (c, d)\}$

- (**d**) $R_4 = \{(a, b), (b, c)(a, c), (a, a), (c, a)\}$
- **Sol.** (a) R₁ is transitive relation because it is null relation.
 - **(b)** R_2 is transitive relation because all

singleton relations are transitive.

- (c) R_3 is transitive relation
- (d) R_4 is also transitive relation
- **Ex.13** Let R be a relation on the set N of natural numbers defined by $xRy \Leftrightarrow x$ divides y' for all x, $y \in N$.
- Sol. This relation is an antisymmetric relation on set N. Since for any two numbers a, b ∈ N. a | b and b | a ⇒ a = b, i.e., a R b and b R a ⇒ a = b.
 It should be noted that this relation is not antisymmetric on the set Z of integers, because

we find that for any non zero integer a a R (a) and (-a) R a, but a $\neq -a$.

- **Ex.14** Prove that the relation R on the set Z of all integers numbers defined by $(x, y) \in R \Leftrightarrow x y$ is divisible by n is an equivalence relation on Z.
- **Sol.** We observe the following properties

Reflexivity :

For any $a \in N$, we have $a - a = 0 \times n \implies a - a$ is divisible by $n \Rightarrow (a, a) \in R$ Thus (a, a) R for all Z. so, R is reflexive on Z. Symmetry : Let $(a, b) \in R$. Then $(a, b) \in R \implies (a - b)$ is divisible by n \Rightarrow (a – b) = np for some p \in Z \Rightarrow b – a = n(–p) \Rightarrow b – a is divisible by n \Rightarrow (b, a) \in R Thus $(a, b) \in R \Rightarrow (b, a) \in R$ for all $a, b, \in Z$. So R is symmetric on Z. **Transitivity :** Let a, b, $c \in Z$ such that $(a, b) \in R$ and $(b, c) \in R$. Then $(a, b) \in R \Longrightarrow (a - b)$ is divisible by n \Rightarrow a – b = np for some p \in Z $(b, c) \in R \Longrightarrow (b - c)$ is divisible by n \Rightarrow b – c = np for some q \in Z

 \therefore (a, b) \in R and (b, c) \in R

 \Rightarrow a – b = np and b – c = nq \Rightarrow (a - b) + (b - c) = np + nq $\Rightarrow a - c = n(p + q)$ \Rightarrow a – c is divisible by n \Rightarrow (a, c) \in R Thus $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all a, b, $c \in Z$. So R is transitive relation on Z. Determine also : Thus, R being reflexive, symmetric and transitive is an equivalence relation on Z. Ex.15 Let a relation R_1 on the set R of real numbers be defined as (a, b) $\in R_1 \Leftrightarrow 1 + ab > 0$ for all a, Sol. $b \in R$. Show that R_1 is reflexive and symmetric $y \in A$ but not transitive. We observe the following properties : Sol. **Reflexivity :** Let a be an arbitrary element of R. Then $a \in R \Longrightarrow 1 + a \cdot a = 1 + a^2 > 0 \Longrightarrow (a, a) \in R_1$ Thus $(a, a) \in R_1$ for all $a \in R$. So R_1 is reflexive on R. Symmetry : Let $(a, b) \in \mathbb{R}$. Then $(a, b) \in R_1 \Longrightarrow 1 + ab > 0 \implies 1 + ba > 0$ \Rightarrow (b, a) \in R₁ Thus $(a, b) \in R_1 \Rightarrow (b, a) \in R_1$ for all $a, b \in R$ So R₁ is symmetric on R **Transitive :** We observe that $(1, 1/2) \in \mathbb{R}_1$ and $(1/2, -1) \in \mathbb{R}_1$ but

 $(1,-1) \in R_1$ because $1 + 1 \times (-1) = 0 \ge 0$. So R_1 is not transitive on R.

Ex.16 Let A be the set of first ten natural numbers and let R be a relation on A defined by $(x, y) \in R \iff x + 2y = 10$ i.e., $R = \{(x, y) : x \in A, y \in A \text{ and } x + 2y = 10\}.$ Express R and R^{-1} as sets of ordered pairs.

(i) Domains of R and R^{-1}

(ii) Range of R and R^{-1}

We have $(x, y) \in R \Leftrightarrow x + 2y = 10 \Leftrightarrow y = x$,

where A = {1,2,3,4,5,6,7,8,9,10}

Now, $x = 1 \Longrightarrow y = \notin A$

This shows that 1 is not related to any element in A. Similarly we can observe that 3, 5, 7, 9 and 10 are not related to any element of a under the defined relation. Further we find that

for x = 2, y =
$$\frac{10-2}{2} = 4 \in A$$
 \therefore (2, 4) $\in R$
for x = 4, y = $\frac{10-4}{2} = 3 \in A$ \therefore (4, 3) $\in R$
for x = 6, y = $\frac{10-6}{2} = 2 \in A$ \therefore (6, 2) $\in R$
for x = 8, y = $\frac{10-8}{2} = 1 \in A$ \therefore (6, 2) $\in R$
Thus R = {(2, 4), (4, 3), (6, 2), (8, 1)} \Rightarrow R⁻¹ = {(4, 2), (3, 4), (2, 6), (1, 8)}
Clearly, Dom (R) = {2, 4, 6, 8} = Range (R⁻¹)
and Range (R) = {4, 3, 2, 1} = Dom (R⁻¹)